Единицы измерения параметров газа

Единицы измерения природного газа;

Единицы измерения сырой нефти

Вопрос 73. Единицы измерения, применяемые в торговле отдельными группами товаров.

Масса брутто-это масса упаковки и продукции в ней. Используется это определение в таможенном деле(и является общей массой декларируемых товаров) Масса нетто – это масса продукции в единице упаковки. В этой упаковке товары поставляются в розничную сеть/торговлю.

1я метрическая система(официально признанная)-Франция, 1799, Для всех народов на все времена

Единицы измерения, в соответствии с общероссийским классификатором единиц измерения (ОКЕИ),подразделяются на семь групп.

1. Единицы длины.

2. Единицы площади.

3. Единицы объема.

4. Единицы массы.

5. Технические единицы.

6. Экономические единицы.

Примеры этих единиц:(Примеры единиц измерения в соответствии с ОКЕИ)

Единицы массы-Обмерная (фрахтовая тонна); водоизмещение; брутто -регистровая тонна (2,8316 м3); нетто-регистровая тонна. Технические единицы-Эффективная мощность (ВНР) (245,7 ватт); британская тепловая единица(BTU) (1,055 кДж)

Экономические единицы-Гросс (gr) (144 шт.); большой гросс (12 гроссов) (1728 шт.); короткий стандарт (7200 единиц); международная единица; сто международных единиц. США (1980-е гг.) и Соединенное Королевство Великобритании (2000 г.) официально приняли метрическую систему мер. Однако в торговой практике до сих пор распространены три системы измерений:

1. Метрическая система (Metric System).

2. Английская система Эвердьюпойс (Avoirdupois Weight).

К числу единиц английской системы относятся:

1 ounce (02) (унция) = 28,35 г

1 pound (Ib) (фунт) = 0,454 кг71

1 hundred weight (cwt) = 50,8 кг

1 short cwt = 45.4 кг

1 short ton (короткая тонна) = 0,907 т

3. Тройская система (Troy Weight).

К числу единиц этой системы относятся:

1 ounce (унция) = 31,1 г

1 pound (5760 grains) (фунт) = 0,373 кг

1 inch (in) (дюйм) = 25,3995 мм

1 foot (ft) (фут) = 30,479 см

1 yard (yd) (ярд) = 0,9144 м

1 quart (qt) (кварта) = 1,1359 л

Для измерения количества нефти в мире сложилось два стандарта . В США, где транспортировка сначала осуществлялась по железной дороге в бочках, а впоследствии – по нефтепроводу, проще всего было измерять нефть по объему. Для транспортировки нефти использовали 50 -тигаллонные винные бочки (1 галлон в США равен 3,785 л). Чтобы учесть потери во время транспортировки, в пункте назначения оплачивалось только 42 галлона. Оплата и теперь производится из того же расчета. В других странах, преимущественно в Европе, нефть в основном транспортировали по морю. В этом случае более удобно определять вес (водоизмещение). В результате в США коммерческие операции с нефтью производятся в баррелях, а в Европе – чаще в тоннах.

Природный газ измеряется в США и многих других странах в тысячах кубических футов. В России и многих европейских странах используют метрические массовые единицы (кубометры). Продукты сжижения природного газа (NGL) учитываются и продаются барре лями. Составные части этих смесей имеют в жидком виде разную плотность, а общая плотность зависит от относительного содержания каждого компонента. Плотность сжиженной смеси этан -бутанов – 510-540 кг/м3. Исходя из того что большая доля NGL приходится на пропан-бутаны, их среднюю плотность можно принять за 500 кг/м3. Таким образом, 1 баррель сжиженного природного газа весит 80 кг. В торговле газом учитывают теплоту сгорания данного энергоносителя. Применяются способы сравнения по условному топливу, по барреля м и тоннам нефтяного эквивалента и другие. Так, статистику общего мирового производства природного газа можно представить в миллионах тонн нефтяного эквивалента, нефтяной эквивалент составляет 10 000 ккал/кг. Наиболее объективной является оценка в британских тепловых единицах (BTU). В частности, эту систему используют при оценке затрат энергии на производство валового продукта. В TU равна 0,252 ккал, т. е. 1 ккал = 3,97BTU. Физически 1000 BTU — теплота сгорания 1 кубического фута метана. Известно, что тонн а условного топлива равняется 7 –10 в6степени ккал, или 27,7-10в6 BTU

Физические параметры и законы газового состояния

Параметры состояния газа

Основными параметрами, определяющими состояние газа, являются давление, температура и плотность или удельный объем.

Давление газа р обусловлено суммой сил ударов беспорядочно движущихся молекул газа о стенки сосуда, занятого этим газом, и численно равно величине нормальной составляющей силы, действующей на единицу поверхности, с которой соприкасается газ.

где F — нормальная составляющая силы; / — площадь, на которую действует сила.

Основными единицами измерения давления являются: в системе единиц МКГСС (метр, килограмм-сила, секунда) — килограмм-сила на квадратный метр (кгс/м 2 ); в Международной системе единиц СИ — ньютон на квадратный метр (н/м 2 ). Под ньютоном понимается сила, сообщающая находящейся в состоянии покоя массе в 1 кг ускорение 1 м/сек 2 , т. е. 1 н = 1 кг-1 м/сек 2 . В практике газоснабжения часто применяются внесистемные единицы измерения давления: килограмм-сила на квадратный сантиметр (кгс/см 2 ), миллиметр водяного столба (мм вод. ст.), миллиметр ртутного столба (мм рт. ст.). 1 кгс/см 2 = 10 000 кгс/м 2 = 10 000 мм вод. ст. = 735,56 мм рт. ст. = 98 066,5 н/м 2 .

Воздух земной атмосферы своей массой оказывает на поверхность Земли и окружающие предметы давление, называемое атмосферным, или барометрическим. Величина его в значительной мере зависит от высоты места измерения и температуры воздуха. На уровне моря при температуре 0° С барометрическое давление равно 760 мм рт. ст. Такое давление называют нормальным атмосферным давлением.

Если из сосуда удалять воздух, то в нем создается давление ниже атмосферного — разрежение. При полном удалении воздуха из сосуда давление становится равным нулю. Давление, отсчитываемое от нуля, называется абсолютным (рабс), а давление, превышающее атмосферное (барометрическое), — избыточным изб). В уравнениях, связывающих параметры состояния газа, применяют абсолютное давление; манометры показывают избыточное давление.

При измерениях разрежения (вакуума) соотношение (II.2) принимает вид

Абсолютная температура Т, °К, характеризует степень на- гретости тела. Измерение температуры можно производить на основании агрегатных изменений вещества под ее воздействием. В частности, в качестве исходных значений, служащих при построении Международной практической температурной шкалы Цельсия для установления начала отсчета температуры и единицы ее измерения — градуса, приняты температура плавления льда (0° С) и кипения воды (100° С) при нормальном атмосферном давлении. Температуры, лежащие выше 0° С, считают положительными, а лежащие ниже 0° С — отрицательными. В системе единиц СИ расчеты температуры производятся от абсолютного нуля в градусах термодинамической шкалы Кельвина. Абсолютный нуль этой шкалы (0° К) характеризуется прекращением теплового движения молекул вещества и соответствует по шкале Цельсия температуре —273,15° С. Таким образом, обе шкалы различаются лишь начальной точкой отсчета, а цепа деления (градуса) у них одинакова.

Плотность р — количество массы вещества в единице объема.

где т — масса вещества; V — объем вещества.

В системе СИ плотность измеряется в килограммах-массы на кубический метр (кг/м 3 ). Подставив в формулу (II.5) выражение массы по закону Ньютона и соответствующие размерности, получим, что размерность плотности в системе единиц МКГСС кгс-сек 2 /м 4 . При расчетах следует помнить, что 1 кгс*сек 2 /м 4 «=* 9,8 кг/м 3 .

Удельный объем v — объем единицы массы вещества — величина, обратная плотности.

Критические параметры (табл. 11.1) характеризуют критическое состояние газа, при котором плотность жидкой и паровой фаз газа одинакова. Сжатием и охлаждением до определенной температуры газы могут быть переведены в жидкое состояние. Однако для каждого газа существует определенная критическая температура, выше которой газ никаким давлением не может быть сжижен. Давление, необходимое для сжижения газа при критической температуре, называют критическим давлением. Чем температура газа ниже критической, тем при меньшем давлении этот газ может быть сжижен. Объем газа, занимаемый при критических давлении и температуре, называют критическим объемом.

Измерение объема природного газа

Измерение объема природного газа

Объем природного газа измеряется обычно в кубических футах¹. Поскольку газ всегда распространяется по всему объему резервуара, его количество зависит от температуры и давления. Поэтому измерения количества газа приводятся к постоянным условиям. В качестве стандартных исходных условий приняты температура 60°F и давление 30 дюймовртутного столба (приблизительно 14,73 фунт/кв. дюйм, или нормальное атмосферное давление); иногда же за эталон принимается температура 20°С (68°F). Объем газа записывается в виде величины, кратной 1000 единиц измерения, сокращенно обозначаемой буквой М; так, 3 540 000 куб. футов газа записывается как 3540 м куб. футов.

Сконструировано множество различных приборов для измерения количества (объема) газа, проходящего по трубам. Большинство замеров объема газа, извлекаемого из скважин, производится с помощью диафрагменных счетчиков-расходомеров, определяющих перепад давления между противоположными сторонами установленной в трубопроводе диафрагмы. Исходя из получаемых перепадов давления с учетом параметров диафрагмы, представляющей собой круглое отверстие в тонкой пластинке, можно рассчитать скорость истечения газа. При медленном истечении газа и давлении, близком к атмосферному, обычно применяются счетчики объемного типа. Объем газа в этих случаях определяется по числу регистрируемых счетчиком поочередных заполнений газом и освобождений от него камеры расходомера. Небольшие количества газа, увлекаемого буровым раствором и заключенного в обломках шлама, обычно улавливаются с помощью газоанализаторов.

Измерение объема газа в природном резервуаре в переводе на его объем в условиях дневной поверхности производится одним из двух распространенных методов, несколько напоминающих методы подсчета запасов нефти в природном резервуаре, с приведением их к нормальным условиям. Объемный метод, или метод насыщения, заключается в умножении объема (в акр-футах) порового пространства, заполненного газом, на отношение между пластовым давлением и давлением на поверхности в атмосферах и на температурную поправку, зависящую от того, насколько температура в природном резервуаре отличается от стандартной, равной 60°F. Коэффициент давления определяется по газо­вому закону, согласно которому объем идеального газа при постоянной температуре меняется обратно пропорционально давлению (Рисунок 1).

Рисунок 1: Обобщенная диаграмма изменения объема газа при повышении давления и постоянной температуре.

При атмосферном давлении, равном 14,7 фунт/кв. дюйм, для приведения объема пластового газа, находящегося под давлением 3000 фунт/кв. дюйм, к атмосферному необходимо помножить объем газа в природном резервуаре на коэффициент давления, равный:

Объем газа меняется также прямо пропорционально абсолютной температуре. Так, объем газа, находящегося в природном резервуаре при температуре140°F, сократится при достижении температуры дневной поверхности, равной60°F, пропорционально температурному поправочному коэффициенту, равному:

Второй метод подсчета количества газа в природном резервуаре с приведением егс к условиям дневной поверхности основан на том, что при отборе газа из пласта пластовое давление снижается. Падение давления на единицу приведенного к атмосферным условиям объема газа, извлекаемого из природного резервуара, прямо пропорционально соответствующему объему газа, оставшегося в природном резервуаре. Так, например, если первоначальное пластовое давление в газовом резервуаре было 2880 фунт/кв. дюйм, а после отбора в течение нескольких лет 400 млн. куб. футов газа оно упало до 2720 фунт/кв. дюйм, то снижение давления на 100 фунт/кв. дюйм происходило с расходом газа 400 000 000/160, т.е. 2 500 000 куб. футов на единицу падения давления. Номинальный остаточный объем газа в природном резервуаре, приведенный к атмосферным условиям, будет равен тогда 2,5 млн. куб. футов, помноженным на 2720 (остаточное пластовое давление в фунтах на кв. дюйм), т.е. 6,8 млрд. куб. футов. Если принять, что пластовое давление при истощении залежи равно 250 фунт/кв. дюйм, то извлекаемые запасы газа, приведенные к условиям дневной поверхности, будут составлять 2 500 000 куб. футов × (2720-250), или 6 175 000 000 куб. футов. Применение этого метода подсчета запасов газа возможно только спустя некоторое время с начала разработки залежи.

¹В некоторых странах, особенно в СССР, объемное количество природного газа часто переводится в метрические тонны нефти; 1000 м z природного газа приравнивается к 0,824 метрической тонны нефти (обычно 1000 м 3 газа считают эквивалентными 1 тнефти).

Как и в чем измеряется расход газа: методы измерения + обзор всех видов газовых расходомеров

Расходомер – устройство для измерения объемного или массового расхода вещества, включая природный газ, горючие, агрессивные газы, продукты разделения воздуха. Вычисление объемов потока на предприятиях промышленной отрасли или в быту можно выполнить и без привлечения специалистов.

Далее мы расскажем как и в чем измеряется газ, приведем описание приборов которые используются для этой цели, а также рассмотрим основные методы определения расхода газа.

Прямой метод измерения потребления газа

Объем газа вычисляют в кубических метрах, реже используются другие единицы массы, такие как тонны или килограммы, как правило, для технологических газов.

Прямой метод – это единственный метод, обеспечивающий прямое измерение объема проходящего газа.

К слабым сторонам приборов, вычисляющих объемный или массовый расход вещества, относятся:

  1. Ограниченная работоспособность расходомеров в условиях загрязненного газа.
  2. Существует высокая вероятность поломки в результате частичного перекрытия потока или пневматического удара.
  3. Высокая стоимость ротационных счетчиков по сравнению с другими приборами.
  4. Крупные габариты устройств.

Многочисленные достоинства этого метода перекрывают перечисленные недостатки, благодаря чему и он и получил наибольшее распространение по числу установленных счетчиков.

В их числе – прямое измерение объема газа, отсутствие зависимости от искажений графика скоростей потока, как на входе, так и на выходе, что позволяет сократить УУГ . Ширина диапазона составляет до 1:100. Для этой цели применяются приборы мембранного и ротационного типа. Они могут использоваться в помещениях, с установленными котлами импульсного типа.

Косвенные методы измерения

Эти методы предусматривают вычисление, к примеру, скорости потока вещества через заданную площадь сечения. Для получения максимально точных результатов необходимо выровнять скорость движения газа.

Измерение расхода газа по перепаду давлений

Один из самых распространенных и изученных методов расхода газа, основанный на использовании сужающего устройства, имеет несколько преимуществ, включая простоту механизма преобразователя расхода, действие которого направлено на измерение перепада давления вещества, протекающего через местное сужение в газовом трубопроводе. Для проведения расчетов не потребуются расходомерные стенды.

Несмотря на наличие полной научно-технической базы, этот метод измерения имеет несколько существенных недостатков – небольшой диапазон измерения, который даже с учетом многопредельных датчиков давления, не превышает значение 1:10.

Гидравлические сопротивления в газовых трубопроводах повышают чувствительность к графику изменения у средненных скоростей по глубине или ширине потока на входе в диафрагму. Длина прямых участков перед сужающими устройствами должна составлять не менее 10 диаметров Ду сооружения из труб.

Скоростной метод определения расходов

Для этого метода используются преобразователи турбинного типа. Эти приборы имеют несколько преимуществ, включая небольшие габариты и вес, доступную цену в своей категории.

У этих устройств отсутствует чувствительность к пневматическим ударам. Интервал значений измерения расхода составляет до 1:30, что существенно превышает аналогичный показатель для сужающих устройств.

К недостаткам можно отнести чувствительность, хоть и незначительную, к искажениям потока на входе и выходе прибора, отклонение результатов измерений пульсирующих потоков газа. На небольших расходах, в диапазоне от 8 до 10 м 3 /ч, расходомеры неработоспособны.

Ультразвуковой метод измерения

Популярность акустических расходомеров, с помощью которых измеряется количество газа, в особенности в коммерческом учете, возросла с развитием микроэлектроники. В акустических расходомерах отсутствуют подвижные части, а также детали, выступающие в поток, что существенно повышает их надежность.

Измерение производится в широком интервале значений благодаря способности устройства продолжительное время работать от встроенного источника питания. Отечественные приборы не отвечают всем необходимым требованиям, так как во избежание влияния искажений потока газа на результаты расчетов необходимо использовать исключительно многолучевые ультразвуковые расходомеры.

Классификация расходомеров по принципу действия

Расходомеры отличаются по нескольким параметрам, включая давление, тип используемого газа, температурный режим. Выбирать устройство следует в зависимости от условий применения, а также поставленных задач.

Измерительные приборы состоят из таких частей, как преобразователь, отвечающий за перепад давления, соединяющего элемента и манометра.

Тип #1 – струйные автогенераторные расходомеры

Расходомер этого типа, предназначенный также для измерения расхода природного газа, имеет несколько отличительных характеристик. Прибор охвачен отрицательными обратными связями, частота подключений струи зависит от расхода газа.

Счетчики, выпущенные на основе струйных расходомеров, применяются для коммерческого учета без предварительной экспертизы.

Расходомер струйного автогенераторного типа подвержен засорению, в числе его недостатков также нестабильность показателя преобразования.

Эти приборы имеют схожие недостатки с вихревыми устройствами:

  • зависимость от искажений графика скоростей, при условии использования в комплекте с сужающими приборами;
  • массовые потери напора невозвратимы;
  • основная часть расходомера имеет огромные габариты;
  • значительная нестабильность показателя преобразования.

Достоинства автогенераторного расходомера не отличаются от вихревого устройства, за исключением способности работать с загрязненными газами. Эти расходомеры не нашли широкого практического применения в коммерческом учете.

Тип #2 – вихревые расходомеры-счетчики

Выделяют несколько сильных сторон приборов, включая точность проведенных измерений, отсутствие чувствительности к загрязнениям и пневматическим ударам, легкость эксплуатации, в устройстве также отсутствуют подвижные части.

Известны и существенные недостатки использования этого типа расходомеров – повышенная чувствительность к механическим колебаниям, просадка давления. Диаметр труб должен находиться в диапазоне 15-30 см.

Тип #3 – ультразвуковые расходомеры

Устройство, также известное как акустическое, имеет несколько неоспоримых преимуществ:

  • отсутствие гидравлического сопротивления;
  • в приборе нет подвижных деталей, что усиливает его надежность;
  • повышенная прочность механизма;
  • быстрое действие.

Расходомер этого типа базируется на определении разницы во времени прохождения сигнала.

Ультразвуковые сенсоры, расположены по диагонали относительно друг друга, выполняют функцию приемника и излучателя. Задействование нескольких каналов компенсирует деформацию профиля потока.

Тип #4 – барабанные расходомеры

Эта категория устройств используется, как правило, для проведения лабораторных исследований. Давление, возникающее во время вращения барабана, приводит к заполнению секцию газом и их последующему опорожнению.

Количество оборотов барабана пропорционально кубическим единицам газа, показатель передается на циферблат счетной конструкции. Барабанные расходомеры обладают высокой точностью измерения.

Тип #5 – левитационные устройства

Подвижная деталь тахометрического устройства вращается в подшипниках, скорость равняется объемному расходу газа. Превращение быстроты кругового движения в электрический сигнал осуществляется с помощью вторичного преобразователя, результаты отражаются на индикаторе.

Левитационные приборы востребованы в коммерческом учете потребления природного газа, как в бытовых, так и в коммунальных целях.

Тип #6 – мембранные счетчики

Патент на изготовление одного из самых распространенных приборов учета для измерения газа был выдан во второй половине девятнадцатого века на территории Англии.

Принцип действия механического расходомера основан на изменении положения подвижных камерных мембран в момент поступления газа. Поочередное перемещение осуществляется во время впуска и выпуска вещества.

Счетное устройство приводит в действие система редуктора и рычагов. Механизмы обладают широким диапазоном значений для измерений – до 1:100.

Тип #7 – ротационные приборы

В устройстве механического типа в измерительной камере расположены два ротора, которые начинают двигаться под напором вещества. Вращающиеся детали расположены под прямым углом друг к другу, их начальное местонахождение фиксируется с помощью колес-синхронизаторов.

Количество газа пропорционально числу оборотов роторов. С помощью магнитной муфты и редуктора вращение ротора передается на счетное устройство, отвечающее за накопление объема прошедшего вещества.

К основным достоинствам ротационных расходомеров можно отнести высокую точность измерения, компактность прибора, широкий диапазон измерений расходов. Среди недостатков выделяют шумность механизма, его высокую стоимость, чувствительность к внешним факторам, в том числе загрязнению.

Тип #8 – турбинные расходомеры

Прибор механического типа имеет форму отрезка трубы, внутри расходомера размещена турбина с валом и движущимися опорами. Силовое устройство двигается за счет вещества, проходящего через измерительную камеру.

Скорость движения механизма равняется скорости потока и расходу газа. Накопленный объем отражается на счетном механизме, передача на него осуществляется механическим способом с помощью редуктора, системы шестеренок.

Помимо перечисленных, существуют и другие устройства, но они используются, как правило, в научных исследованиях. В коммерческой сфере они практически не задействованы.

Рекомендуем также прочесть другую нашу статью, где мы подробно рассказали о том, как выбрать газовый счетчик для дома. Подробнее – переходите по ссылке.

Приборы для измерения количества газа

Устройства для измерения расхода газа по способу вычисления делятся на несколько категорий. Скоростные используются для определения объемного числа исследуемой среды. В этих приборах отсутствуют измерительные камеры. Чувствительной деталью выступает турбинка (тангенциальная или аксиальная), которую приводит во вращение поток вещества.

Объемные счетчики отличаются меньшей зависимостью от типа продукта. К их недостаткам можно отнести сложность конструкции, высокую цену и внушительные габариты. Устройство состоит из нескольких измерительных камер, отличается более сложной конструкцией. Делится этот тип приборов на несколько видов – поршневые, лопастные, шестеренчатые.

Известна и другая классификация счетчиков количества газа, которая включает три типа устройств: роторные, барабанные и клапанные.

Роторные счетчики обладают большой пропускной способностью. Их действие основано на вычислении количества оборотов лопастей внутри устройства, показатель соответствует объему газа. К основным их преимуществам можно отнести долговечность, независимость от электроэнергии, повышенную устойчивость к кратковременным перегрузкам.

Барабанные счетчики состоят из корпуса, счетного механизма и барабана с измерительными камерами. Принцип действия устройства для измерения потребления газа состоит в определении количества оборотов барабана, который вращается за счет разности давления. Несмотря на точность вычислений, этот тип приборов не нашел широкого применения по причине своих громоздких размеров.

Принцип действия последнего типа счетчиков, известного как клапанный, базируется на перемещении подвижной перегородки, на которую действует разность давления вещества. Устройство состоит из нескольких частей – счетного и газораспределительного механизма, а также корпуса. Имеет большие габариты, поэтому в основном используются в быту.

Выводы и полезное видео по теме

О том как работают вихревые газовые расходомеры пойдет речь в следующем видеоролике:

Измерение расхода газа – одна из ключевых задач на производстве. На рынке расходомеров представлено огромное количество устройств с различными конструкциями и принципами действия, которые подойдут и для бытовых нужд. С их помощью можно определить практически любое количество жидкости или газа, при этом не потребуется специальная поверочная образцовая установка.

Вы можете дополнить наш материал интересными сведениями по теме статьи, задать интересующие вопросы или поучаствовать в обсуждении. Оставляйте свои комментарии в расположенном ниже блоке.

Ссылка на основную публикацию